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INTRODUCTION 

Our studies were focused on the following three main areas: (i) the search for 
new phases/compounds whose properties can be used for the development of high 
performance magnets, (ii) the use of the novel processing techniques of melt-spinning 
and mechanical alloying for the fabrication of nanocrystalline/nanocomposite magnets 
with improved magnetic properties, and (iii) the understanding of the magnetic hardening 
behavior of these magnets which will help us design stronger and less expensive magnets. 
This project has been very successful and has led to numerous publications and 
presentations at national meetings and conferences. A brief summary of the findings is 
listed below. 

SUMMARY OF IMPORTANT RESULTS 

1. Rare Earth-Fe(Co)-Carbides and Nitrides 

Our research was focused on the 2:17-type and 3:29-type carbides and nitrides. 
The incorporation of interstial C and N was found to improve the magnetic properties 
substantially. 

(i) Magnetically hard Sm2Fen_xGaxCy (x = 2, 3 and y = 1, 1.5, 2, 2.5) ribbons 
were prepared with a high coercivity of 12.8 kOe at room temperature. The 
high coercivity obtained in this study may be attributed to the addition of Ga, 
which allows a higher solid solubility of carbon in the samples with a 
corresponding increase in the anisotropy field. Microstructure studies 
revealed the coexistence of an a-Fe and a 2:17 type phase. In samples 
annealed at high temperatures, the distribution of these phases is 
inhomogeneous, with a course grain size leading to a shoulder in the 
demagnetization curve. However, in samples annealed at lower temperatures 
(700°C) the grains are finer and uniform, leading to a smooth demagnetization 
curve with a lower coercivity but with a higher reduced remanence, which are 
characteristic of nanocomposite exchange-coupled magnets. 

(ii) The R^Fen-type Sm2Fei4_xCoxSi2 compounds with x = 0 to 7 crystallize in 
Th2Zni7-type structure. Substitution of Co leads to an increase in Curie 
temperature from 514 K for x = 0 to 817 K for x = 7. It also enhances the 
uniaxial anisotropy that changes from planar in Sm2Fei4_xCoxSi2 to uniaxial 
for x >4. The Sm2Fei4.xCoxSi2Ny nitrides maintain the Th2Znn-type structure 
but with a unit-cell expansion AV/V up to 5% compared to the host materials. 
The Sm2Fei4.xCoxSi2Cz carbides with z = 1 maintain the Th2Znn-type 
structure, and transform to the BaCdn-type structure for z = 2. The room- 
temperature anisotropy field obtained is 100 kOe for Sm2Fei4Si2C and 17 kOe 
for Sm2FeioCo4Si2N2.3.  A very large anisotropy field is also observed at low 



temperature (1.5 K) with a value of 204 kOe for Sir^FeuSiaC and 276 kOe for 
Sm2FeioCo4Si2N2.3. 

(iii) Srri3(Feo.933Tio.o67)29N5 and the parent compounds crystallize in the 
Nd3(Fe,Ti)29-type structure. These compounds exhibit a ferromagnetic 
coupling with a Curie temperature of 750 K and a saturation magnetization of 
157 e.m.u.g"1 at 4.2 K. Sm3(Fe0.933Tio.o67)29 compounds exhibit uniaxial 
anisitropy from 4.2 K to the ordering temperature. The anisotropy field is 12 
T at room temperature and 25 T at 4.2 K. The nitrides and carbides studied 
here all have excellent intrinsic magnetic properties and can be new 
candidates for permanent magnet development. 

2. Nd-Fe-B Magnets with MgO Addition 

In this work we have studied in detail the effect of MgO on the magnetic 
properties and intergranular microstructure. We have found that both coercivity and 
thermal stability can be remarkably enhanced by the intergranular addition of MgO. For 
Nd22Fe7iB7 magnets with 2 wt % MgO addition, the coercivity at room temperature and 
180°C are enhanced from 17.0 and 3.2 kOe to 22.1 and 5.2 kOe respectively, and the 
reversible and irreversible flux loss from room temperature to 180°C is reduced from 
25.4% and 5.2% to 20.5% and 0.5%, respectively. Microstructural studies reveal that a 
new intergranular Nd-O-Fe-Mg phase with a composition close to Nd7o023Fe3Mg2 
appears in magnets with the addition of MgO. The improvement of magnetic properties 
by the addition of MgO is believed to be due to the appearance of the Nd-O-Fe-Mg 
intergranular phase, which probably hinders the propagation of the domain walls between 
Nd2Fei4B grains. It is further found that the addition of Mg or O alone into the 
intergranular regions of the magnets does not lead to the formation of this Nd-O-Fe-Mg 
intergranular phase, and thus, cannot substantially improve the coercivity and the thermal 
stability of the magnets. 

3. Nanocrystalline/Nanocomposite Magnets 

These magnets consist of a fine mixture of hard and soft phases that are exchange- 
coupled to lead to a magnet with higher magnetization, higher remanence, and energy 
product. 

(i) Pr2Fei4B/a-Fe 

Nanocomposite P^FeuB/a-Fe magnets have been synthesized by melt-spinning a 
PrgFesöBö alloy at low wheel speed in the range from 10 to 22 m/s. Microstructural and 
magnetic studies showed that there is an optimum wheel speed (about 17 m/s) at which a 
uniform P^FenB/a-Fe microstructure with fine a-Fe grains is developed directly from 
the melt. Lower speed leads to larger grains for both the 2:14:1 and a-Fe, while higher 
speed leads to the appearance of an amorphous phase that will result in a P^FenB/a-Fe 
structure with larger a-Fe grains after a subsequent crystallization annealing. Magnetic 
properties obtained under the optimum-quenching followed by a subsequent annealing 



are Ms = 176.6 emu/g, Mr = 118.2 emu/g, Mr/Ms = 0.67, Hc = 5.4 kOe and (BH)m = 12.6 
MGOe. The coercivity and energy product are about 20% higher than those obtained by 
over-quenching and then annealing due to the refinement of a-Fe size that leads to an 
enhanced exchange coupling between P^Fe^B/a-Fe. The fine a-Fe development is 
associated with its solidification behavior characterized by higher nucleation rate and 
lower growth rate during the rapid solidification. 

(ii) R2(Fe, Co, Nb)i4B/(Fe, Co) (R = Nd, Pr) 

Nanocomposite R2(Fe,Co,Nb)i4B/(Fe,Co) (R = Nd, Pr) magnets prepared by 
crystallizing the as-made R8(Fe,Co,Nb)g6B6 amorphous melt-spun ribbons have been 
studied. The coercivity is found to depend mainly on the grain size of the soft phase that 
is very sensitive to the sample composition. The average grain size is about 30 nm in 
RsFgöBö, but the microstructure is not homogeneous and there are several large a-Fe 
grains with sizes up to 50-100 nm. The coercivities are 3.3 kOe in NdgFegöB6 and 4.9 
kOe in PrgFegöBß samples. Nb substitution significantly reduces the grain size of a-Fe 
and increases the coercivity. The highest coercivities obtained are 5.5 kOe in 
Ndg(Feo.97Nbo.o3)g6B6 and 9.3 kOe in Pr8(Feo.92Nb0.o8)86B6 samples. Co substitution for Fe 
increases the grain size of both the 2:14:1 phase and a-Fe and dramatically decreases the 
coercivity. Increasing the B content in Co substituted samples leads to the formation of a 
more homogeneous and finer microstructure and thus to a partial recovery of the 
coercivity from 2.3 kOe in Nd8(Feo.5)Coo.5)o.97Nb0.o3)86B6 to 4.3 kOe in 
Nd8(Feo.5Coo.5)o.97Nbo.o3)82Bio and from 2.1 kOe in PrgCFeo.sCoo^tmNbo.oe^eBe to 6.5 
kOe in Prg((Feo.5Coo.5)o.94Nbo.o6)82Bio. It is further found that Co substitution improves 
the temperature dependence of the saturation magnetization. 

(iii) Sm(Co,Fe,Cu,Zr)2Mx 

The objective of this study was to produce a nanocrystalline Sm2(Co,Fe,Cu,Zr)i7, 
magnet consisting of magnetically hard Srr^Con/SmCos phases and soft Fe (Co) phases. 
For this we have prepared melt-spun ribbons of Sm(Coo.65Feo.28Cuo.o5Zro.o2)zBx with z = 
7.0, 7.7, 8.5, 9.0, x = 0, 0.5, 1.0, and SmCCoo.eoFeo^Cuo.osZro.oaCo.Oz with z = 7.7, 8.5, 
9.0 and 9.5 and determined their crystallization temperatures, crystal structure, structure 
morphology and magnetic properties. It was found that the magnetic properties were 
very sensitive to the nominal composition and processing parameters. Increasing the 
boron content from x = 0.5 to x = 1.0 resulted in samples with higher a-Fe content and 
reduced coercivity. Energy products up to 8 MGOe and reduced remanence as high as 
0.72 were observed. In general, the boron containing samples gave higher values of 
coercivity and of reduced remanence because their microstructure was finer. 

(iv) Exchange Spring Behavior 

The magnetic properties of nanocrystalline melt-spun single phase (IS^FeuB- 
type) and composite (Nd2Fei4B + a-Fe) magnets have been studied systematically in an 
attempt to better understand their 'exchange spring' behavior. The reversibility of the 
fecoil demagnetization curves has been found to increase with increasing content of the 



soft phase giving rise to the characteristic exchange spring behavior only in 
nanocomposite samples. 5M plots indicate positive interactions of the exchange type for 
small fields; for fields higher than the remanence coercivity, magnetostatic interactions 
become dominant. The relative strength of the magnetostatic interactions is increased in 
samples with higher soft phase contents. 
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